Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model fluidflow systems

نویسندگان

  • D. DOLEJŠ
  • C. E. MANNING
چکیده

We present a thermodynamic model for mineral dissolution in aqueous fluids at elevated temperatures and pressures, based on intrinsic thermal properties and variations of volumetric properties of the aqueous solvent. The standard thermodynamic properties of mineral dissolution into aqueous fluid consist of two contributions: one from the energy of transformation from the solid to the hydrated-species state and the other from the compression of solvent molecules during the formation of a hydration shell. The latter contribution has the dimension of the generalized Krichevskii parameter. This approach describes the energetics of solvation more accurately than does the Born electrostatic theory and can be extended beyond the limits of experimental measurements of the dielectric constant of H2O. The new model has been calibrated by experimental solubilities of quartz, corundum, rutile, calcite, apatite, fluorite and portlandite in pure H2O at temperatures up to 1100!C and pressures up to 20 kbar. All minerals show a steady increase in solubility along constant geothermal gradients or water isochores. By contrast, isobaric solubilities initially increase with rising temperature but then decline above 200–400!C. This retrograde behavior is caused by variations in the isobaric expansivity of the aqueous solvent, which approaches infinity at its critical point. Oxide minerals predominantly dissolve to neutral species; so, their dissolution energetics involve a relatively small contribution from the solvent volumetric properties and their retrograde solubilities are restricted to a relatively narrow window of temperature and pressure near the critical point of water. By contrast, Ca-bearing minerals dissolve to a variety of charged species; so, the energetics of their dissolution reactions involve a comparatively large contribution from volume changes of the aqueous solvent and their isobaric retrograde solubility spans nearly all metamorphic and magmatic conditions. These features correlate with and can be predicted from the standard partial molar volumes of aqueous species. The thermodynamic model can be used over much wider range of settings for terrestrial fluid–rock interaction than has previously been possible. To illustrate, it is integrated with transport theory to show quantitatively that integrated fluid fluxes characteristic of crustal shear zones are capable of precipitating quartz or calcite veins from lowand medium-grade metamorphic conditions, at a geothermal gradient of 20!C km. For subduction zones, modeled by a geotherm of 7!C km, the required fluid fluxes are one to two orders of magnitude lower and predict enhanced efficiency of mass transfer and metasomatic precipitation in comparison with orogenic settings. The new model thus can be applied to shallow hydrothermal, metamorphic, magmatic and subduction fluids, and for retrieval of dependent thermodynamic properties for mass transfer or geodynamic modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Solubility of CO2 in the Solution of Aqueous K2CO3 Using Wilson-NRF Model

Hot potassium carbonate (PC) solution in comparison with amine solution had a decreased energy of regeneration and a high chemical solubility of . To present vapor and liquid equation (VLE) of this system and predict  solubility, the ion specific non-electrolyte Wilson-NRF local composition model (isNWN) was used in this study; the framework of this model was molecular. Therefore, it was suitab...

متن کامل

A Modified van der Waals Mixture Theory for Associating Fluids: Application to Ternary Aqueous Mixtures

In this study a simple and general chemical association theory is introduced. The concept of infinite equilibrium model is re-examined and true mole fractions of associated species are calculated. The theory is applied to derive the distribution function of associated species. As a severe test the application of presented theory to the van der Waals mixture model is introduced in order to p...

متن کامل

Solubility Parameter of Fluids from Molecular Thermodynamic Model

The modified square well Potential is combined with perturbed-hard-trimer-chain (PHTC) EOS to predict the solubility parameter of several fluids including alkanes, refrigerants and molten polymers. The performance of the proposed model has been evaluated by predicting the solubility parameter of 12 hydrocarbons,3 refrigerants, and 12 polymers. From the 263 data points for hydrocarbons and refri...

متن کامل

Thermodynamic Study of Water Activity of Single Strong Electrolytes

Today, due to the natural decline of oil exploitation, the use of methods of oil recovery, has made significant progress. However, these methods are accompanied by accumulation and deposition of mineral deposits in oil field installations. In the present study, aqueous solutions, strontium sulfate, barium sulfate, manganese sulfate and nickel sulfate are studied, in terms of EUNIQUAC model and ...

متن کامل

Solubility of Methane, Ethane, and Propane in Pure Water Using New Binary Interaction Parameters

Solubility of hydrocarbons in water is important due to ecological concerns and new restrictions on the existence of organic pollutants in water streams. Also, the creation of a thermodynamic model has required an advanced study of the phase equilibrium between water (as a basis for the widest spread muds and amines) and gas hydrocarbon phases in wide temperature and pressure ranges. Therefore,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010